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University of Washington

Abstract

Multi-Agent Consensus Optimization in Large-Scale Supply Networks

Niyousha Rahimi

Chair of the Supervisory Committee:

Multi-agent systems are characterized by decentralized decision-making by the (semi)-autonomous

agents and localized communication or information exchange among the neighboring agents.

Supply-demand networks form the backbones of both services and manufacturing industries,

and need to operate as efficiently as possible to yield optimized returns. In this Master’s

thesis, we bring the notion of multi-agent systems to clustered supply-demand networks such

that each supplier acts as an agent. Consequently,

• We adapt consensus-based auction bidding methods to optimize the assignment of de-

mands to the suppliers with known communication pathways and resource constraints.

• Results on moderately large networks are presented, which show promising performance

in terms of both assignment quality, as given by the overall demand delivery cost and

proportion of assigned demands, and computation time.
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Chapter 1

INTRODUCTION

Supply networks, which form integral components of all services and manufacturing in-

dustries, have received a lot of attention over the past decade or so due to the ever-increasing

need to design and operate them with maximal agility and efficiency. Representative exam-

ples include intelligent transportation services such as car sharing, where the customers do

not own the cars but rent them as and when necessary from whichever depot they wish

to. In direct logistics services, all kinds of goods deliveries are made to a large number of

customers at widely varying locations within fixed time windows. Similarly, in streamlined

manufacturing, raw materials and finished products are made available to the production

facilities and sellers, respectively, before their supplies run out based on both current and

forecasted demands. For all these industries, the common requirement, therefore, is that

the suppliers (resource providers) are able to deliver as much of the demands, as quickly as

possible, whenever and wherever they show up while minimizing their operational costs. An

example of such supply-networks is illustrated in Fig. 1.1.

While a lot of progress has been made in designing and understanding the commercial

and societal impacts of such services, real-time schedule optimization remains an extremely

challenging problem. Existing services rely mostly on nominal schedules that are optimally

generated using hours of computation. As a result, these schedules are either always non-

optimal leading to increased costs and lower revenues, or cannot be optimized whenever some

form of disruption happens that may lead to non-fulfillment of user/customer demands. To

address these issues, we developed a cloud-based software solution using distributed multi-

agent consensus (MAC) methods instead of centralized combinatorial optimization methods

(e.g., mixed integer linear programs) that are employed commonly. In this project, we scaled
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Figure 1.1: Schematic illustration of a supply-network across a country

up these MAC methods to real-world transportation networks, investigated how they can

be best combined with widely-used optimization methods, and ensured robustness to a vast

majority of service disruptions. While existing MAC methods were evaluated during the

initial part of the project, recent advances in topological analysis and control of complex,

time-varying networks were leveraged to design a novel method in the latter half of the

project. We believe these methods would have a game-changing effect in realizing truly

meaningful schedule optimization for real-world transportation services on an asper-demand

basis.



www.manaraa.com

3

Chapter 2

LITERATURE REVIEW

The goal of this thesis is to develop effective multi-agent consensus methods for (near)

real-time optimization of schedules in next-generation transportation services. Such services

may include car sharing programs, where the users do not own the cars but rent them as and

when necessary, and delivery vehicle fleet programs, where consumer deliveries have to be

made on time or within fixed time windows. Any such service, therefore, requires effective

scheduling of resources (vehicles, drivers, etc.) to satisfy user/customer demands.

Existing methods for (near) real-time optimal assignment of the demands to the suppli-

ers, rely mostly on mathematical programming, especially heuristics [1], Linear Programs

(LPs) [2], and the widely-used Mixed Integer Linear Programs (MILPs) [3]. However, these

methods often do not incorporate the communication constraints among the suppliers. Fur-

thermore, they belong to the paradigm of centralized decision-making, where the suppliers

are simply allocated specific demands rather than being able to choose which demands to

deliver. Correspondingly, the computation times are often large, and scale exponentially

with the problem size in the case of MILPs [4].

One related topic is the problem of assigning orders for parts among various suppliers

in a supply chain to deliver customer demands for products at low cost. There are many

studies on this topic, the focus of which are on evaluating and prioritizing suppliers and

assigning demands among the suppliers [5–13]. In [14], a hybrid algorithm is proposed

based on MILP and the Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS) to assign customer demands to the suppliers. Sawik [15] present a new decision-

making problem based on two conflicting objective functions: cost and customer service
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level. The combinatorial optimization problem is formulated as a stochastic mixed integer

program with the ordered weighted averaging aggregation of the two conflicting objective

functions. Furthermore, Mohammaditabar et al. [16] make use of cooperative and non-

cooperative game theory to analyze supplier selection in decentralized supply chains, where

the suppliers have capacity constraints. In this work, the two areas of supplier selection

models and coordination mechanisms are combined to analyze the selected suppliers and

total supply chain costs. Consequently, it establishes the notion that demand assignment in

supply networks is similar to task planning for a team of networked agents.

Here, we build on this similarity notion, and consider each supplier in the network as

an independent decision-making agent, which shares limited information with its adjacent

(communicating) neighbors. This approach is particularly beneficial in the transportation,

logistics, and manufacturing scenarios discussed earlier, where the independent suppliers are

competing to provide resources for the incoming demands. To retain competitive advantages,

they want to share as little information as possible on delivery costs and available resources.

A centralized solution would not work well in the absence of complete information sharing

among the suppliers. Furthermore, it would not be resilient to failures and uncertainties

resulting from equipment breakdowns, traffic delays, adverse weather conditions, etc.

Hence, we adapt optimization methods for networked multi-agent systems, particularly

the Consensus-Based Bundle Algorithm (CBBA) presented in [17]. CBBA is a decentralized

auction algorithm for task assignment in a fleet of autonomous vehicles. Auctioning is used

for decentralized task assignment and a consensus procedure is employed for decentralized

conflict resolution. CBBA focuses on finding the best bidder, which provides the lowest cost

for each task, while assuming that no constraint is imposed on the number of tasks allo-

cated to each agent. It is further augmented in [18] by adding task decomposition and task

elimination protocols to ensure cooperation in a network of heterogeneous agents. Several

researchers have also adapted the algorithm for asynchronous communication [19], localized

communication [20], heterogeneous robots [21], robot-task clusters [22], and sensor manage-

ment for tracking space objects [23]. A single-item auction method has also been developed
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for task assignment with temporal constraints [24], and a distributed auction algorithm has

been presented for the generic assignment problem [25].

We extend the CBBA method to assign demands to the supply networks by explicitly

modeling resource constraints in the form of supplier capacities and demand volumes. The

CBBA method provides a collection of action rules for allocating a certain number of tasks

to autonomous vehicles, where no constraints are imposed on the number of tasks that can

be assigned to each vehicle. On the other hand, in our method, we introduce a new set of

action rules for assigning demands, with given volumes, to suppliers with limited capacities.

We then combine the modified CBBA method with another optimizer to split up the leftover

demand volumes and assign them to the suppliers that have not yet exhausted their capacities

and are willing to share additional information.

We evaluate different versions of our method, where they differ as regards how and when

the demands are split up, on five sets of randomly generated networks ranging from rea-

sonably small (100 suppliers and 100 demands) to moderately large (500 suppliers and 1400

demands). The results indicate that the most realistic method version yields solutions, which

are quite close to a baseline optimizer in terms of demand delivery costs and proportions of

feasible demand volumes assigned, reasonably quickly, regardless of the problem size.
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Chapter 3

TECHNICAL APPROACH

3.1 Network Structure

The network representing the supply-demand problem consists of agents (suppliers) as the

nodes. The network is partitioned into P disjoint clusters based on considerations such as

geo-spatial proximities, common customers or capabilities, and similar delivery costs1. Each

cluster also contains a virtual demand node that acts as the demand manager and the cluster

representative. As demands come to the network, the virtual node in each cluster stores

the information about the demands’ volumes, i.e., the number of resources required by the

demands. The agents then decide individually how much resources (capacities) to assign for

what demands based on their own demand-specific cost values and the limited information

shared by the other communicating agents, which does not include their respective cost

values. Note that the costs are determined by each supplier for each unit demand, based on

the delivery distance/time and the maximum order quantity (demand volume). The overall

objective is to assign the maximum feasible demand volume with the least total delivery cost

as given by the sum of the individual supplier delivery costs.

The edges between any two nodes indicate that the corresponding agents are connected,

i.e., they can communicate with each other. The virtual demand node in each cluster is

connected to all the suppliers in that cluster. We assume that all the clusters representatives

(virtual demand nodes) are connected to each other, and, therefore, they form a complete

graph. However, the suppliers within a cluster do not necessarily form a complete graph2.

1Identifying these clusters is a problem in its own right, and is outside the scope of this work. Apart from
standard clustering techniques, recent works on network community detection [26] might be useful in this
regard.

2The suppliers in a cluster may also be connected to certain suppliers in other clusters, which is not
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Such a network is modeled as a simple undirected graph G = (V,E), with the set of nodes

V = {v1, v2, . . . , vn} and the set of undirected edges E = {(vi, vj)} ⊆ V × V . Each edge

(vi, vj) ∈ E represents the connection between nodes vi and vj. This graph is partitioned

with P clusters, which are subsets of the original graph G:

G1, G2, . . . , GP ⊂ G (3.1)

where

Gp = (Vp, Ep) ∀p ∈ {1, 2, . . . , P}.

Here, Vp ⊂ V includes both the supplier nodes and the representative (virtual demand node

vdp) in the cluster p. Ep ⊂ E includes both the connections among the suppliers and the

connections with vdp in the cluster p. The cluster representatives create a complete graph

KP of size P , and is denoted as Gv:

Gv = {Vv, Ev} = KP ⊂ G

Vv = {vd1, vd2, . . . , vdP}.
(3.2)

The adjacency matrix LGp(t) representing the agents’ communication links is defined in

(3.3). The agents are not required to communicate all the time; hence, the elements of the

adjacency matrix change with respect to time t.

[L(Gp)(t)]ij =


1 if (vi, vj) ∈ Ep & vi and vj

are communicating

0 otherwise.

(3.3)

The capacity of any cluster is the sum of the capacities of all its suppliers. If r(vi) denotes

the resources of node vi in cluster p ∈ {1, 2, . . . , P}, the capacity of cluster p, Rp, is given by

Rp =
∑
vi∈Vp

r(vi). (3.4)

explicitly considered in our demand assignment methods.
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When demands come into the network at any time instant t, the demand managers in each

cluster are updated with the new demand information. The list of demands for the network

is represented as:

D(t) = {D1, D2, . . . , DO(t)}, (3.5)

where O(t) is the number of demands that appear at time t. The list of demands assigned

to each cluster is then represented as:

dp(t) = {Dp
1, D

p
2, . . . , D

p
Zp
}, (3.6)

where p ∈ {1, 2, . . . , P}, Dp
i ∈ D(t), and Zp is the number of demands assigned to cluster p.

The goal of the demand assignment problem, therefore, is to find a conflict-free matching

of demand volumes (or portions of demand volumes) to the clusters that minimizes a global

cost function and forms a demand set for each cluster. The goal, afterward, is to assign

demand volumes (or again, portions of demand volumes) from each clusters’ demand set to

its suppliers. For any demand Dj coming to the network, each cluster p has a unit cost cpj

that is the average unit delivery cost of its suppliers for Dj. Hence, the global cost is the

total sum of the delivery costs for the demand volumes assigned to all the clusters. Each

cluster is assigned a maximum of Zp demands, such that r(dp(t)) ≤ Rp, where r(dp(t)) is the

total number of resources that cluster p’s demand set (dp) requires at time t, and Rp is the

total number of resources that cluster p possesses.

Note here that the demand volumes may be split among the clusters, and the total volume

of each demand Dj assigned to the clusters should be less than or equal to r(Dj), the total

number of resources required by Dj. The assignment process is completed either when all the

demands in D(t) are assigned to the clusters, or the network runs out of resources. Hence,

when the process is complete, a total of Nmin = min{
∑P

p=1Rp,
∑O(t)

j=1 r(Dj)} resources is

assigned to the demands. An identical problem is solved for supplier-level assignment within

each cluster. The overall demand assignment problem is illustrated schematically in Fig.

3.1.
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Figure 3.1: Schematic illustration of the optimal assignment problem for supply-demand
networks. The problem is modeled as a two-stage process, where the demands are first
assigned to the suppliers clusters and then to the individual suppliers within the clusters.
The virtual demand nodes serve as the representative clusters nodes that store all the assigned
demands so far and communicate among the clusters if necessary. Certain demands are split
into multiple components, both among the clusters and the suppliers, to assign as much of
the demands as possible while satisfying the suppliers capacities.

3.2 Multi-Agent Consensus Methods

We now present our multi-agent consensus methods for assigning the demands in two stages,

first to the clusters and then to the suppliers in each of the clusters. In both the stages, we

adopt a two-pronged approach: a) an auction bidding mechanism for first assigning complete

demands (if possible) to the agents without sharing cost information; b) another optimization

process to assign the leftover demands (if possible) only to those agents who are willing to

share their cost and remaining capacity information3.

In networks of agents, the term consensus refers to reaching an agreement regarding

3It is reasonable to expect that at least some of the agents would be interested in sharing their “sensitive”
information to get additional demands. Also, note that the cost values for only the unassigned demands,
and remaining rather than total agent capacities are required for this process.
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a certain quantity of interest that depends on all the agents states [27]. We adapt the

CBBA method [17] to allow the (partially) communicating agents to bid for the demands

independently, and arrive at a consensus regarding the winning bid list and the winners

list based on the demand delivery costs and available resources. We replace the bundle

construction process in the CBBA method with an initialization phase that takes into account

the fact that the agents can only provide resources for a limited number of demands as

permitted by their respective capacities. Subsequently, we introduce a new set of action

rules to modify the conflict resolutions process that explicitly considers the agents resource

constraints. The methods are described below for both the demand assignment stages.

3.2.1 First Stage

Consensus optimization for complete demand assignment without cost information sharing

by the agents consists of two phases: initialization and conflict resolution.

• Phase 1: Initialization

Each cluster first places a bid on each demand. This bid is based on the average lowest

cost of delivery for each demand provided by the suppliers in that cluster. The bids comprise

the lowest costs that the clusters can provide for each demand. Let cpj ≥ 0 be the cost of the

bid that cluster p places on demand j. Each cluster carries three vectors: a winning bid list

Yp ∈ RO(t)
+ , which is an up-to-date estimate of the winner’s bid made for each demand thus

far, a winners list wp ∈ {1, . . . , P}O(t), where P is the number of clusters in the network,

and a cost vector Cp = [cp1, cp2, . . . , cpO(t)]
T , where O(t) is the total number of demands in

the network’s demand set D(t). For each cluster, Yp is initialized as the cost vector, i.e.,

Yp = Cp, and wp is initialized as an empty list. Algorithm 1 demonstrates the procedure of

cluster p’s phase 1 at time t.
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Algorithm 1: Phase 1 for cluster p:

1 function Build Cost Vector (D(t), p)
2 j ← 0
3 while j ≤ O do
4 Cp(j)← min

c
cpj ∀ Dj ∈ D(t)

5 wp(j)← ∅
6 j ← j + 1

7 end
8 Yp ← Cp
9 return (Cp, wp, Yp)

10 end function

The assignment process at time step t consists of a single run of phase 1 (to determine Cp

and initialize Yp, wp) and several iterations of phase 2 (to reach a consensus on the winning

bids list Yp and the winners list wp). Note that each cluster’s iteration count can be different,

which allows the possibility that each cluster has different iteration periods. In this phase,

each cluster determines a minimum cost for each demand regardless of the number of required

resources. This information is used in the next phase to determine the winning bid and the

winner.

• Phase 2: Conflict Resolution

In this phase, clusters make use of a consensus strategy to converge to a winning bid list

Yp and a winners’ list wp. This allows conflict resolution over all the assignments while not

limiting the network to a specific structure. The adjacency matrix for the cluster represen-

tatives is defined such that lpk(t) = 1 if a link exists between the representatives of cluster

p and cluster k at time t, and 0 otherwise (just as a reminder, the representative of each

cluster is its demand manager).

Consensus is performed on Yp and wp based on Yk and wk received from each neighbor

for all k such that lpk = 1. In each iteration, clusters receive information (Yk and wk) from

their adjacent neighbors {k|lpk = 1}, and determine the winning bid and the winner for each
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demand. The key characteristic of our consensus protocol is that the sequence of demand

assignments is based on the maximum difference in the demand cost as determined by the

two communicating clusters. Therefore, based on the shared information, each cluster adds

suitable demands to its demand set dp(t) while trying to reach a consensus on Yp and wp

with the other clusters.

A cluster loses its assigned demand if it is outbid by other clusters for the demand it has

selected, and reimburses its resources. Apart from Yp and wp, each cluster communicates

another vector which is sp ∈ RP . This vector represents the time stamp of the last informa-

tion update from each of the other clusters. Each time a message is passed, the time vector

is populated with

spk =


γ if lpk = 1

max
{m:lpm=1}

smk otherwise
(3.7)

where γ is the message reception time.

The algorithm uses wp and sp to determine which clusters information is the most up-

to-date for each demand, every time it receives a message from cluster k. In the consensus

process, we need to use a decision rule to determine the winning bid and the winning cluster

for each demand. This decision rule is explained in Table 3.1. Cluster p is the receiver and

cluster k is the sender. There are five possible actions cluster p can take for demand j:

1. Update: Yp(j) = Yk(j), wp(j) = wk(j); Cluster p will update the jth element of its

winning bids list Yp and its winner list wp.

2. Reset: Yp(j) = Cp(j), wp(j) = ∅; cluster p resets the jth element of its Yp and wp to

the initial state.

3. Leave: Yp(j) = Yp(j), wp(j) = wp(j);

4. Add: Yp(j) = Cp(j), wp(j) = p , dp(t)⊕Dj, Rp ← Rp− r(Dj); here, dp(t)⊕Dj means

cluster p adds demand Dj to its demand set.
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5. Assign to k: Yp(j) = Yk(j), wp(j) = k

At the beginning of the algorithm, wp(t) for each cluster p is a vector with O(t) empty

elements. Also, for each cluster p, Yp(t) is equal to Cp(t). This means that the winning

bid for each demand is the minimum cost of delivery as determined by each cluster p.

In each iteration of phase 2 for cluster p ∈ {1, . . . , P}, when p receives information from

k ∈ {k|lpk(t) = 1}, it first checks if the two clusters have already reached a consensus on

the winning bid list (Yp(t)) and the winners’ list (wp(t)), which, of course, at iteration 1,

they have not. Then, it starts the process of calculating dC, which is a vector identifying

the difference in the cost of delivery for each demand as determined by cluster p and the

winner in cluster k’s winner’s list (dC(j) = Cp(j) − Yk(j)). Cluster p makes a decision for

each demand using Table 3.1, starting with the demand that has the maximum difference in

the delivery cost (i.e., Jp = arg max
j
|dC(j)|).
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Table 3.1: Action Rule for Cluster p Based on Communication with Cluster k Regarding
Demand j

Cluster k (sender)
thinks wk(Jp) is

Cluster p (receiver)
thinks wp(Jp) is

Receiver’s Action (default: leave)

k p if dC(Jp) > 0 : update and reimburse
k update

m 6∈ {p, k} if skm > spm or dC(Jp) ≥ 0: update
none ( ∅ ) if dC(Jp) < 0 & r(DJP ) < Rp: add

else : update
p p leave

k if r(DJp) ≤ Rp: add
else if cpJp ≤ Yp(Jp) : leave
else if cpJp > Yp(Jp) : reset

m 6∈ {p, k} if skm > spm: if r(DJp) ≤ Rp: add
else if cpJp < Yp(Jp) : leave
else if cpJp > Yp(Jp) : reset

none ( ∅ ) if r(DJp) ≤ Rp : add

m 6∈ {p, k} p
if skm > spm and dC(Jp) ≥ 0 : update &

reimburse
k if skm > spm : update

else : reset
m if skm > spm : update

n 6∈ {p, k,m} if skm > spm and skn > spn : update
if skm > spm and dC(Jp) > 0 : update

if skn > spn and spm > skm : reset
none ( ∅ ) if skm ≥ spm & dC(Jp) ≥ 0 : update

else if skm ≥ spm & dC(Jp) < 0 : add
none ( ∅ ) p if dC(Jp) ≤ 0 : leave

else assign to k & reimburse
k reset

m 6∈ {p, k} if skm > spm : reset
else if dC(Jp) > 0: assign to k

none ( ∅ ) if dC(Jp) ≤ 0& r(DJp) ≤ Rp: add
else assign to k
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This process continues for the rest of the senders k ∈ {k|lpk = 1} and iterations of phase

2 continues for each cluster p until they all reach a consensus on the winning bid list and

the winners’ list. Algorithm 2 demonstrate the pseudo code function for the second phase.

Note that the number of iterations for each cluster is independent. Phase 2 of the algorithm

runs simultaneously for all the clusters until they reach a consensus. In order to define a

consensus on the winning bid list, we define a (P × P ) matrix: X ∈ {0, 1}P×P .

Algorithm 2: Phase 2 for cluster p at iteration τ

11 Receive Yk and wk from k with lpk(t) = 1
12 function Resolve Conflicts ((Lp(t), Cp(t), Yk∈{k|lpk(t)=1}, wk∈{k|lpk(t)=1}, sk∈{k|lpk(t)=1})

13 Send Yp and wp to k with lpk(t) = 1
14 Receive Yk and wk from k with lpk(t) = 1
15 if Yp(t) = Yk(t) then
16 X (p, k)← 1

17 else
18 X (p, k)← 0; dC ← Cp(t)− Yk(t)
19 i← 0
20 while i ≤ O do
21 Jp ← arg max

j
|dC(j)|

22 Determine wp(Jp) and Yp(Jp) according to Table 3.1
23 dC 	 dC(Jp)
24 i← i+ 1

25 return (wp, Yp,X )
26 end function

At the beginning, since none of the clusters agree on the winning bid list, X is an identity

matrix IP (each cluster only agrees with itself). When cluster p exchanges data with an

adjacent cluster k, it first checks if they agree on the winning bid list. If this is true, cluster

p assigns 1 to the element (p, k) of the X matrix, ends the procedure for cluster k, and goes

to the next iteration. If these two clusters do not agree on the winning bid list, cluster p

assigns 0 to the element (p, k) of the X matrix, and goes through the rest of the process.
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It is worth noting here that X may not be always symmetric since each cluster can be at

a different iteration. However, after a sufficiently large number of iterations, X becomes

symmetric. The algorithm terminates when all the elements of X are equal to 1.

The consensus bidding algorithm for the first stage of demand assignment without any

form of splitting the demands is explained in Algorithm.3
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Algorithm 3: Consensus-based auction bidding for assigning demands to clusters with-
out splitting them

27 procedure Assign Demands Without Splitting
28 foreach p ∈ {1, . . . , P} do
29 (Cp, wp, Yp)← Build Cost Vector (D(t), p)
30 end
31 X ← IP
32 foreach p ∈ {1, . . . , P} do
33 while X 6= 1 do
34 (wp, Yp,X )← Resolve Conflicts ((Lp(t), Cp(t), Yk∈{k|lpk(t)=1}, wk∈{k|lpk(t)=1},

sk∈{k|lpk(t)=1})

35 end

36 end
37 end procedure
38

39 function Build Cost Vector (D(t), p)
40 j ← 0
41 while j ≤ O do
42 Cp(j)← min

c
cpj ∀ Dj ∈ D(t)

43 wp(j)← ∅
44 j ← j + 1

45 end
46 Yp ← Cp
47 return (Cp, wp, Yp)
48 end function
49

50 function Resolve Conflicts ((Lp(t), Cp(t), Yk∈{k|lpk(t)=1}, wk∈{k|lpk(t)=1}, sk∈{k|lpk(t)=1})

51 Send Yp and wp to k with lpk(t) = 1
52 Receive Yk and wk from k with lpk(t) = 1
53 if Yp(t) = Yk(t) then
54 X (p, k)← 1
55 end
56 else
57 X (p, k)← 0; dC ← Cp(t)− Yk(t)
58 i← 0
59 while i ≤ O do
60 Jp ← arg max

j
|dC(j)|

61 Determine wp(Jp) and Yp(Jp) according to Table 3.1
62 dC 	 dC(Jp)
63 i← i+ 1

64 end

65 end
66 return (wp, Yp,X )
67 end function
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• Assigning Left-over Demands

When demands are assigned to the clusters, there may be several demands that are not

delivered due to the paucity of resources. Such non-deliveries happen either when the network

does not have the resources for these demands, or none of the clusters have enough resources

to deliver any of these demands individually. In the former scenario, nothing can be done

and the system reports the unassigned demands. However, in the latter scenario, since the

clusters together may have enough resources to completely or partially deliver the leftover

demands, another optimization method is used to assign them to the clusters. This method

enables the network to fully use its resources to respond to the demands.

This process requires some additional information from the clusters, which includes their

remaining capacities (CapacityInfo(p)), unit costs for the remaining demands (CostInfo(p, j)),

and their willingness to participate in this process. The clusters can either choose to par-

ticipate or refuse to share their information. A vector, termed as ClusterWill, records the

willingness of each cluster p to collaborate. After receiving the additional information from

the clusters, vector dc is constructed to store the difference between the maximum and min-

imum cost of delivery for each demand. Starting from a demand Jp that has the maximum

difference, the optimizer searches for a cluster pJp that provides the minimum cost for this

demand. Since none of the clusters can individually provide the resources for any of the

leftover demands, the optimizer splits the demand based on cluster pJp ’s remaining capac-

ity, assigns the first part to cluster pJp , and searches for the next best cluster to assign the

second part. If the next best cluster has enough resources to deliver the second part of the

demand, it is assigned to this cluster and the optimizer continues to assign the next demand.

Otherwise, the second part of this demand is split further based on the cluster’s capacity

and the optimizer searches for the third best cluster. This process continues until either all

the demands are assigned or the system runs out of resources. Algorithm. 4 explains this

process. During the cluster level assignment, this optimization method act as a centralized

process.
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Algorithm 4: Optimized assignment of leftover demands to clusters

68 procedure Assign Leftover Demands by Splitting
69 foreach p ∈ {1, . . . , P} do
70 (CostInfo(p, :), CapacityInfo(p)) ← Get Cluster’s Information(p)
71 end
72 foreach Dj ∈ D(t) do
73 maxCost(j)← max

j
CostInfo(p, j)

74 minCost(j)← min
j

CostInfo(p, j)

75 end
76 dc← maxCost − minCost
77 while D(t) 6= ∅ or

∑
p CapacityInfo(p) 6= 0 do

78 Split and Assign Demands
79 end
80 end procedure
81

82 function Get Cluster’s Information(p)
83 if ClusterWill(p) == 1 then
84 CostInfo(p, j) ← min

c
cpj ∀ Dj ∈ D(t)

85 CapacityInfo(p)← Rp

86 end
87 return (CostInfo, CapacityInfo)
88 end function
89

90 function Split and Assign Demands
91 Jp ← arg max

j
|dc(j)|

92 while r(DJp) 6= 0 or
∑

p CapacityInfo(p) 6= 0 do

93 pJp ← arg min
p

CostInfo(p, Jp)

94 if r(DJp) ≤ RpJp
then

95 dp(t)⊕DJp

96 RpJp
← RpJp

− r(DJp)

97 CapacityInfo(p)← RpJp

98 D(t)	DJp

99 end
100 else
101 r(DJp(1))← RpJp

102 r(DJp)← r(DJp)−RpJp

103 dp(t)⊕DJp(1)
104 RpJp

← 0

105 CapacityInfo(p)← RpJp

106 end

107 end
108 end function
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3.2.2 Second Stage

After assigning the demands to the clusters, the demands in each cluster are assigned to the

suppliers in that cluster. The consensus auction bidding optimization procedure to reach a

consensus on the winning bid list and the winners list for the cluster’s demand set is the same

as described above. Only the connected suppliers communicate with each other in reaching

the consensus. The problem of leftover demands may also occur in this stage. We then use

the optimization method described before to assign the leftover demands to those suppliers

that participate in exchanging cost and remaining capacity information. This process is

performed by the virtual demand node in each cluster, which receives all the additional

information from the participating suppliers.

3.3 Demand assignment methods

We combine the consensus-based auction bidding process with the leftover demand assign-

ment optimizer in several ways to come up with five different demand assignment methods.

These methods are described as follows.

Method 1: In this case, full volume demands are assigned to the clusters using our

consensus auction bidding process in the first stage. After this step, when the clusters reach

a consensus, the optimizer is used to assign the leftover demands to the clusters, assuming

that all the clusters agree to share cost and remaining capacity information. By the end of

this step, the network has used all its resources to respond to the demands.

In the second stage, to obtain a fast solution for demand assignment and avoid leftover

demands as much as possible, at the beginning, all the demands are split into an equal

number of parts based on their volumes. Subsequently, as in the first stage, consensus-based

auction bidding method is used to assign the split demands to the suppliers of each cluster.

After the suppliers have reached a consensus, the optimizer is used to assign the leftover

demands to the suppliers as described before.

Method 2: This method is basically the same as the first method with one key difference.
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In the second stage, when the leftover demands are assigned to the suppliers in each cluster,

some of the suppliers may choose not to share their information, i.e., remaining capacity

and delivery cost for the leftover demands. This choice results in assignment of the leftover

demands only to those suppliers that are willing to participate in the communication process.

Clearly, the network may not use its full capacity to respond to the demands. However, this

method considers a more realistic scenario for the demand assignment problem, and may be

most useful in practice.

Method 3: In this case, the demands are assigned to the clusters and then to the

suppliers in each cluster as described in the first method. The only difference here is that

leftover demand assignment is not carried out at the end of the second stage In other words,

the optimization method for leftover demand assignment is only used during the first stage

when the demands are assigned to the clusters. This may happen in practice when none

of the suppliers are willing to directly share their cost and capacity information due to the

proprietary nature of the information and/or the competitiveness of the demand bidding

process. Note here that sharing such information is less of an issue during the first stage

as all the supplier cost and remaining capacity values get combined for the entire cluster,

making it difficult to derive specific competitive benefits.

Method 4: Here, again, the consensus-based auction bidding and leftover demand as-

signment are carried out in the same manner as in the first method to assign the demands

to the clusters. The difference from the first method is that at the beginning of the second

stage, the demands are not divided into an equal number of parts. Instead, the demands

are assigned to the suppliers as full volumes, and after a consensus is reached, the optimizer

splits the leftover demands and assigns them to the suppliers. This means that the demands

are split up only at the end of the assignment process based on the remaining capacities of

the suppliers.

Method 5: In this last case, the demands are assigned to the clusters and then to

the suppliers in each cluster using only the consensus-based auction bidding procedure. No

attempt is made to assign the leftover demands by splitting them up and requesting exchange
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of additional information among the agents. It is, therefore, expected that this method, being

the simplest one considered, would be most computationally efficient but also least optimal

in its assignment.
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Chapter 4

IMPLEMENTATION

4.1 Results

We now present the results of applying these five demand assignment methods for differ-

ent network complexities. For each network complexity, 30 different random configurations

were generated to evaluate the methods. The methods were implemented using C# in Mi-

crosoft Visual Studio Community 2017, version 15.3.5 and Microsoft .NET framework version

4.7.02556. All the tests were run on a desktop PC with an Intel Xeon E5-1607 v4 3.10 GHz

processor, 8 GB of RAM, and Windows 10 Pro as the OS. When needed, the demands in each

cluster’s demand set were split into four equal parts, and the suppliers had a 50% probability

of participating in the leftover demand assignment process1. To compare the performance of

our methods with a best-case centralized optimizer, we also implemented an integer linear

program (ILP) in the widely-used IBM ILOG CPLEX Optimization Studio v12.8 - Student

(CJ2IKML) [28]. The ILP modeled the demand assignment problem without accounting for

the supplier communication constraints as described in the Appendix.

1Although not reported here for the sake of brevity, we tested our methods for various choices of demand
volume split and supplier participation probability. The delivery costs are insensitive to the split value, and
decreases a little bit as the probability increases to 50% before plateauing out for higher values, indicating
the overall robustness of our methods.
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Figure 4.1: Comparisons of delivery costs for the five demand assignment methods un-
der varying supply network complexities with respect to a baseline centralized optimization
method.

Figure 4.1 compares the demand delivery costs of all the assignment methods against

the baseline costs returned by the CPLEX ILP. For the unassigned demands, the maximum

delivery costs are reported. Method 1 consistently performs the best by yielding costs that

are statistically not different from the ILP values. This result shows that it is sufficient to

split the demands into four equal parts for the networks to deliver all the demands that can

be possibly satisfied with near-optimal costs. As the supply-demand network complexity

grows, naturally, the total delivery cost increases. It is then worthwhile to note that all

our methods perform equally well with respect to the baseline cost values regardless of the

network complexity.

Figure 4.2 enumerates the computation times of all the demand assignment methods.

We observe that the actual computation times are reasonable, ranging from a few seconds to

a few minutes, even without code optimization leading to under-utilization of the available

compute resources. Equally promisingly, the increase in computation times appears to be

polynomial with respect to network complexity. Furthermore, the time values are similar
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for all the methods across all network complexities, with Methods 5 and 1 being the most

and least efficient, respectively. These results are expected considering how the leftover

demands are assigned in these two methods as compared to the rest. Also, as expected,

the CPLEX ILP runs faster than our methods since it solves a simpler problem with no

supplier communication constraints; encouragingly, the actual times are of the same order

of magnitude.

Figure 4.2: Comparisons of computation times for the five demand assignment methods
under varying supply network complexities.

Figure 4.3 plots the percentage of assigned demands by the five methods with respect to

the overall network capacity. As discussed before, Method 1 uses the entire network capacity

to assign the demands by assuming that the agents are always interested in arriving at

consensus even when the demands are split up. On the contrary, all the other methods show

varying levels of under assignment of the demands, with Method 5 performing the worst

by completely ignoring the leftover demands. It is also useful to point out that Method 2,

employing the realistic model of assigning the leftover demands only among the interested

suppliers, performs quite well in terms of all the evaluation metrics. This result is particularly
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Figure 4.3: Comparisons of assigned demand volume proportions for the five different meth-
ods under varying supply network complexities.

promising in terms of providing an overall recommended method to use for the practitioners.

Figure4.4 characterizes the robustness of our approach to the network clustering scheme

and variations in the number of demands. The results are reported only for Methods 1

and 2 to maintain presentation clarity. We observe that the delivery costs of both the

methods are unaffected by changes in the number of clusters (and, therefore, the scale of

the assignment problem in any cluster), for a given network size and a fixed set of demands.

The delivery costs increase linearly with the number of demands for a fixed network size and

clustering scheme, which again shows the capability of our methods to consistently generate

near-optimal demand assignments.
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Figure 4.4: Comparisons of the total delivery cost using Methods 1 and 2 for 500 node
networks with varying number of clusters (C) and demands (D).

To justify our choice of splitting demands at the beginning of the second stage to 4 parts

and to show how the choice of suppliers’ participation in the leftover demand assignment

affects the total delivery cost, we tested Methods 1 and 2 on a 300 node network with 18 clus-

ters and 500 demands. Method 1 (where all the suppliers participate in the leftover demand

assignment) is used with different choices of K (from 2-6) and Method 2 is used with K = 4

and different supplier participation percentage (30%− 70%) within each cluster. Figure 4.5

shows that changing K does not affect the total delivery cost, and 50% participation gives

comparable results to higher participation values. As expected, lower participation values

yield slightly inferior results, but should be used if they model the network more accurately.

We do not include this Figure in the manuscript for the sake of brevity, but summarize the

results as footnote 4 in page 6.
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Figure 4.5: Comparison of delivery costs for different supplier participation percentages in
Method 2 and different demand splits in Method 1.
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Chapter 5

CONCLUSION

5.1 Conclusion

In this paper, we adapt consensus-based auction bidding methods for optimizing demands as-

signments to networked agents (suppliers) in a decentralized manner, where the assignments

are made first to the supplier clusters and then to the individual suppliers within the clusters.

Our methods explicitly account for cluster and supplier-level capacities (resources). They

also consider splitting up the leftover (initially unassigned) demands into smaller volumes in

a few different ways to be able to assign as much of the demands as possible at near-optimal

costs within the constraint imposed by the overall network capacity. Simulation results on

randomly generated moderate-sized networks show that the methods yield close-to-optimal

assignments, successfully assign almost complete feasible demand volumes, are computed

reasonably quickly, and are robust to network and model parameters.

We, therefore, believe that our methods would provide the foundations for multi-agent

consensus optimization in networked systems with resource constraints. We also hypothesize

that our methods are guaranteed to converge to solutions within some acceptable bounds

of the optimal assignments. In fact, we should be able to build on the analogous proofs

that exist for the CBBA method, although the extensions would be non-trivial to account

for the two-stage assignment, resource constraints modeling, and demand volume splitting.

Such extensions should be possible since we preserve the sequential nature of the consensus-

building process, our delivery costs are non-negative, and bid selection is done by ranking

the demands according to the maximum cost difference between the communicating agents,

similar to the policy of assigning the tasks with maximum discounted rewards to the agents

in the CBBA method.
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5.2 Future Work

Future work includes modeling additional network characteristics such as the presence of

multiple communication routes between two suppliers, supply flow capacity restrictions in the

communication pathways, and time windows to deliver specific demands. Moreover, we plan

to investigate the effects of network failures, as characterized by communication breakdowns

and non-functional agents, on the computation time, quality, and robustness of the generated

assignments. Similar investigation is planned to analyze the impacts of structural changes in

networks due to the introduction and/or removal of suppliers or communication routes. Last,

we intend to implement our methods on parallel computing paradigms for rapid assignment

generation in the case of large-scale, dynamic supply networks with continuous inflows of

demands. It would also be useful to model and solve the stochastic assignment problem where

the demands, costs, capacities, failure modes and rates, and even the network structures vary

randomly.
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Appendix A

INTEGER LINEAR PROGRAMMING (ILP) FORMULATION

The ILP formulation for assigning the demands to the clusters without considering the

communication pathways among the suppliers is given in (A.1). cpj is the delivery cost

for demand Dj provided by cluster p, and αpj is the number of resources cluster p would

provide for demand Dj. The ILP minimizes the total delivery cost with respect to α. The

constraints are defined as: 1) for each cluster p, the sum of the provided resources for all

the demands,
∑O(t)

j=1 αpj, should be less than or equal to the cluster p’s capacity Rp; 2) the

total number of resources assigned to each demand,
∑P

p=1 αpj, should be less than or equal to

the demand volume r(Dj); 3) the total number of resources assigned to the demands should

be the minimum of the network’s capacity or the sum of the demand volumes. The same

formulation is used to assign the demands to the suppliers within each cluster by simply

replacing the clusters with the suppliers.

minα

P∑
p=1

O(t)∑
j=1

cpj · αpj

subj. to 0 ≤
O(t)∑
j=1

αpj ≤ Rp ∀p ∈ {1, . . . , P}

0 ≤
P∑
p=1

αpj ≤ r(Dj) ∀Dj ∈ {D1, . . . , DO(t)}

P∑
p=1

O(t)∑
j=1

αpj = min


O(t)∑
j=1

r(Dj),
P∑
p=1

Rp



(A.1)
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